INSTRUCTION CLASSIFICATION

Sol e s

An il.lstruction is a binary pattern designed inside a microprocessor to perform a specific
function. The entire group of instructions, called the instruction set, determines what

" functions the microprocessor can perform. The 8085 microprocessor includes the instruc-
tion set of its predecessor, the 8080A, plus two additional instructions.

5.21 The 8085 Instruction Set

The 8085 instructions can be classified into the following five functional categories: data
transfer (copy) operations, arithmetic operations, logical operations, branching opera-
tions, and machine-control operations.

Scanned with CamScanner

7

DATA TRANSFER (COPY) OPERATIONS other location,
This group of instructions copies data from a location called a source to another localion

called a destination, without modifying the contents of the source. In technical ma;:fliss’
the term data transfer is used for this copying function. However, the term ;ran; o
fisleading: it creates the impression that the contents of a source are destroyed when, :
fact, the contents are retained without any modification. The various types of data trans

fer (copy) are listed below together with examples of eacW

N

. Types Examples
0 Between registers Copy the contents of register B into register D.
L Specific data byte to a reg- Load register B with the data byte 32H.
ister or a memory. location -
[Between a memory location From the memory location 2000H to register B.
.and a register . : S
[Between an I/0 device and From an input keyboard to the accumulator.

the accumulator

ARITHMETIC OPERATIONS

These instructions perform arithmetic operations such as addition, subtraction, increment,
and decrement.

£\

] Addition{'—;Any 8-bit number, or the contents of a register, or the contents of a mem-

" lator. , :
"_',_f.}iD ; AND,OR,Excluswe-OR—-AnY 8-bit number, or the
- Memory location can be logically ANDed, ORed, o
- Of the accumulator rest

5

ory location can be added to the contents of the accumulator and the sum is stored in
the accumula@ No two other 8-bit registers can be added directly (e.g., the contents
of register B cannot be added directly to the contents of register C). The instruction
DAD is an exception; it adds 16-bit data directly in register pairs.

O Subtraction “Any 8-bit number, or the contents of a register, or the contents of a
memory location can be subtracted from the contents of the accumulator and the re-
sults stored in the accumulator)) The subtraction is performed
the, results, if negative, are expressed in 2’s complement. No t
subtracted directly. "

0 Increment/Decrement—The 8-bit contents of a register or a

~incremented or decremented by 1. Similarly, the16-bit conten

- as BC) can be incremented or decremented l?y 1. These ni_ﬁrxﬂc_:{gp}_g‘rﬁlt and decreme_nt op-
__erations differ from addition and subtraction in an important way: i.c., they can be per-
formed ifi-any_one of the registers or in a memory location. =

3 S i e

in 2’s complement, and
WO other registers can be

memory location can be
ts of a register pair (such

¥ LOGICAL OPERATIONS.
kb hese ins&u@tib'ns:perfdnn_ v?rious logical operations with the contents of the

accumu-

contents of g register, or of a

luswe-ORed with the contents
iator.

y

2 results are stored in the accumy

Scanned with CamScanner

ft or right tO the next po-

. | ifted either 1€
L Rotate ~Each bit in the accumulator can be shifted

sition,

L Compare-—Any 8-bit number, or the contents 0 .
be compared for equality, greater than, or less than, W
lator,

m (3Bl . m leme

H Complement—The contents of the accumulator can be comp

placed by 1s and all 15 are replaced by 0s.

or a memory Jocation can

ister, u-
f a regl . he con tents of the accum

nted; all Os are re-

BRANCHING OPERATIONS : :ther conditionally
This group of instructions alters the sequence of program execution e
Or unconditionally.

. . - sion-maki rocess in

O Jump—Conditional Jumps are an important aspect of the decision making Cp rry flag)
programming. These instructions test for a certain condition (e.g., Zero or . arry . g
and alter the program sequence when the condition is met. In addition, the instruction

set includes an instruction called unconditional jump.)

L Call, Return, and Restart—These instructions change the sequence of a program ei-
ther by calling a subroutine or returning from a subroutine. The conditional Call and
Return instructions also can test condition flags.

- MACHINE CONTROL OPERATIONS
These instructions control machine functions such as Halt, Interrupt, or do nothing.

5.22 Review of the 8085 Operations

The microprocessor operations related to data manipulation can be Summarized in f
functions: SO

. copying data

. performing arithmetic operations

. performing logical operations

. testing for a given condition and altering the program sequence

SN

Some irﬁpqrtant aspects of the instruction set are noted below:

1. In data trah_sfer, the contents of the source are not destroyed; only th

, de§tinationare changed. The data copy instructions do not affect the ;COntems of the
2. Anthmeticand logical operations are performed with the contents of thagS'
- and the results are stored in the accumulator (With some exceptions - Accumulator,
fected according to the results. puons). The f

3. Any.register including memory can be used for'increment and decrepa

4. A program sequence can be changed either condition ey

ags are af.

ally or by testing for 4 given dgy
ata

- condition.

Scanned with CamScanner

L TTTITT T T ALY AW BUBY ASSEMBLY LANGUAGE PROGHRAILYLLING

5 3

A

i T, ¢ v37"7
_MV‘Q“\M\ILA Comls & LeHenn IO Suggert the aqp” ¢t

. INSTRUCTION AND DATA FORMAT

W

- An instruction is a command to the microprocessor to perform a given task on spﬁcii:led
- data. Each instruction has two parts: one is the task to be performed, called the operation
code (opcode), and the second is the data to be operated on, called the operand. The
operand (or data) can be specified in various ways. It may include 8-bit (or 16-bit) data,

an internal register, a memory location, or an 8-bit (or 16-bit) address. In some i
tions, the operand is implicit.

5.31 Instruction Word Size
The 8085 instruction set is classified into the following three groups according to word

size:

1. One-word or 1-byte instructions
2. Two-word or 2-byte instructions
3. Three-word or 3-byte instructions

In the 8085, “byte” and “word” are synonymous because it is an 8-bit micro-
processor. However, instructions are commonly referred to in terms of bytes rather than
words.

ONE-BYTE INSTRUCTIONS
A 1-byte instruction includes the opcode and the operand in the same byte. For example:

Task Opcode Operand* Binary Code Hex Code
Copy the contents of MOV CA 0100 1111 4FH.
the accumulator in -
register C. ‘ :
Add the contents of ADD B 1000 0000 {0H

register B to the o
contents of the ac-
cumulator.

Invert (complement) CMA 0010 1111 2FH
each bit in the ac- —
cumulator. ' e

These instructions are 1-byte instructions performing three different tasks. In the
first instruction, both operand registersare specified. In the second instruction, the

operand B is specified-and the accumulator is assumed. Similarly, in the third instruction

*In the operand, the destination rggister C is shown first, followed by the source register A

Scanned with CamScanner

PROGRAMMING THE et

These instructions are stored in 4-

\/ the accumulator is assumed to be the implicit ope Enanc Jocation.
bit binary format in memory; each requires one memory

TWO-BYTE INSTRUCTIONS ' a0 the second byte
In a 2-byte instruction, the first byte specifies the operation code and th
specifies the operand. For example:
Hex
Task Opcode Operand Binary Code Code
Load an 8-bit MVI A,Data 0011 1110 3E Flrf‘ i‘/g«:)
data byte DATA Data Second Byte
in the ac-
cumulator.

Assume the data byte is 32H. The assembly language instruction is written as
Mnemonics Hex Code

MVI A,32H 3E 32H

This instruction would require two memory locations to store in memory.

THREE-BYTE INSTRUCTIONS

In a 3-byte instruction, the first byte specifies the opcode, and the following two bytes
specify the 16-bit address. Note that the second byte is the low-order address and the third
byte is the high-order address. For example:

= . Hex
Task Opcode Operand Binary Code Code
Transfer the JMP 2085H 1100 0011 C3* First Byte
program 1100 0011 85 Second Byte
sequence 0010 0000 20 Third Byte
to the ')
memory
location
~ 2085H.

i 'ThlS instruction would require three memory locations to store in memory.

| These commands are m many ways similar to our everyday conversation. For ex-
-ample, whlle eatmg in a restaurant, we ‘may make the following requests and orders:

')C;l Pass (the) butter.
Pass (lhe) bowl

Scanned with CamScanner

HOW TO WRITE, ASSEMBLE, AND EXECUTE
A SIMPLE PROGRAM

1 to tell a computer to perform 2 specific

. i ctions writte)
A program is a sequence of instru he microprocessor. To

function. The instructions are selected from the instruc?tion set of th - tions the 3085
write a program, divide a given problem in small steps in terms ('Dft Sop e Drogar s
can perform, then translate these steps into instructions. Writing a simple prog :

adding two numbers in the 8085 language is illustrated below.

5.41 Ilustrative Program: Adding Two Hexadecimal Numbers

PROBLEM STATEMENT .
Write instructions to load the two hexadecimal numbers 32H and 48H in registers A and
B, respectively. Add the numbers, and display the sum af the LED output port PORTI.

PROBLEM ANALYSIS

Even though this is a simple problem, it is necessary to divide the problem into small
~ steps to examine the process of writing programs. The wording of the problem provides
sufficient clues for the necessary steps. They are as follows:

1. Load the numbers in the registers.
2. Add the numbers.
3. Display the sum at the output port PORT].

FLOWCHART

The steps listed in the problem analysis and the sequence can be represented in a block
diagram, called a flowchart. Figure 5.2 shows such a flowchart representing the above
steps. This is a simple flowchart, and the steps are self-explanatory. We will d?scuss flow-
charting in the next chapter.

ASSEMBLY LANGUAGE PROGRAM

To write an assembly language program, we need to translate the blocks sh i
flowchart into 8085 operations and then, subsequently, into mnemonics. B IOWn Pt ¥
the blocks, we can classify them into three types of operations: Blocks 1' 21 ;xammm g
operations; Block 2 is an arithmetic operation; and Block 4 is a machj and 3 are copy
tion. To translate tl}egg: steps into assembly and machine languages =T OR e
the instruction set. The translation of each block into mnem onic z’ ou should review
- shown as follows: : - vith comments is

Scanned with CamScanner

lN'I’RODUCTIo Y N

;

‘ N TO 8085 ASSEMBL LANGUAGB PROGRAMMI

7 G

- FIGURE 55

~ Flowchary: Adding Twe Numberg

Block ‘1:

Block 2:
Block 3:
Block 4:

MVI A 32H
MVI B 48H
ADD B
OUT 01H
HALT

151

Start

r \
Load l M

Hex
ﬂlmbcrs

Add 2

e) 5629

Display 3
Sum

%r
End 4

Load register A with 32H
Load register B with 48H

“Add two bytes and save the sum in A

Display accumulator contents at port 01H
End ~ -

FROM ASSEMBLY LANGUAGE TO HEX CODE
To convert the mnemonics into Hex code, we need to look up the code in the 8085 in-
struction set; this is called either manual or hand assembly.,

Mnemonics

MVI A,32H
MVI B,48H

ADD B
OuUT 01H

HLT

Hex Code

3E, - 2-byte instruction
32. :

06 2-byte instruction

- 48 i

80 [-byte instruction
D3 2-byte instruction
01

76 I-byte instruction

STORING IN MEMORY AND CONVERTING FROM HEX
CODE TO BINARY CODE

o ¢ the progra in R/W memory of a »Sin , ‘ i
9 S!Or 1 - r() ’r "l ln : " “ § . a .» ,ct “\ a8
utpuf, we need to know the memory a 58CS the outpul po f 83, l ;
outpuf, we knc ry addresses and the output port ad.dt, 55

gle-board microcomputer and display the

Scanned with CamScanner

sume that R/W memory ranges from 2000H to 20FFH, and the system has an LED out-
put port with the address O1H. Now, to enter the program:

1. Reset the system by pushing the RESET key.
2. Enter the first memory address using Hex keys where the program should be stored.

Let us assume it is 2000H.

3. Enter each machine code by pushing Hex keys. For example, to enter the first machine
code, push the 3, E, and STORE keys. (The STORE key may be labeled differently in
different systems.) When you push the STORE key, the program will store the ma-
chine code in memory location 2000H and upgrade the memory address to 2001H.

4. Repeat Step 3 until the last machine code, 76H.

5. Reset the system.

Now the question is: How does the Hex code get converted into binary code” The
answer lies with the Monitor program stored in Read-Only memory (or EPROM) of the
microcomputer system. An important function of the Monitor program is to check the
keys and convert Hex code into binary code. The entire process of manual assembly is
shown in Figure 5.3.

In this illustrative example, the program will be stored in memory as follows:

Memory

Mnemonics Hex Code Memory Contents Address
MVI A,32H 3E 0011 1110 2000
32 0011 0010 2001
MVI B,48H 06 0000 0110 2002
48 0100 1000 2003
ADD B 80 1000 0000 2004
‘OUT 01H D3 1101 0011 2005
| 01 0000 0001 2006
HLT 76 O111 1110 2007

- This program has eight machine codes and will require eight memory locations to
store the program. The critical concept that needs to be emphasized here is that the mi-
croprocessor can understand and exccute only the binary instructions (or data); evervihing
else (mncmonics. ch code, comments) is for the convenience of human beings

EXECUTING 'I'HE PROGRAM

 To execute the pmgmm. we need to tell the microprocessor where the program begins by
entering the memory address 2000H. Now, we can push the Execute key (or the ke y with

~a similar label) to begin the exceution, As soon as the Execute function key is pushed, the

 microprocessor foads 2000H in the program counter, and the program control s trans-

{(,m:d from the Mnmtm‘ pm&mm 1o our program,

: "I}u.‘; micmpnwmsmr hegtm m rend one machine code at a time, and when 1t fetches

' ﬂ’if ;,,{m’lp}(‘tt m«tmctim. i Mtz‘ﬂmv% that instruction. o example, o will fetch the ma-

Scanned with CamScanner

T

-~ DATA TRANSFER (COPY) OPERATIONS

One of the primary functions of the microprocessor is copying data, from a register (or
/O or mermory) called the source, to another register (or I/O or memory) called the des.
tination. In technical literature, the copying function is frequently labeled as the data
transfer function, which is somewhat misleading. In fact, the contents of the source are
not transferred, but are copied into the destination register without modifying the contents
of the source.

- Several instructions are used to copy data (as listed in Chapter 5). This section is
concerned with the following operations.

- MOV : Move Copy a data byte.
MVI : Move Immediate Load a data byte directly.
OUT : Output to Port Send a data byte to an output device.
IN : Input from Port Read a data byte from an input device.

The term copy is equally valid for input/output functions because the contents of the
source are not altered. However, the term data transfer is used so commonly to indicate
the data copy function that, in this book, these terms are used interchangeably when the

meaning is not ambiguous.
In addition to data copy instructions, it is necessary to introduce two machine-

control operations to execute programs.

HLT: Halt Stop processing and wait.
NOP: No Operation Do not perform any operation.

These operations (opcodes) are explained and illustrated below with examples.

INSTRUCTIONS
The data transfer instructions copy data from a source into a destination without

modifying the contents of the source. The previous contents of the destination are re-
placed by the contents of the source.

Scanned with CamScanner

INTRODUCTION TO 8085 INSTRUCTIONS Vv

| Important Note: In the 8085 processor, data transfer instructions do not affect the flags.

Opcode Operand
MOV Rd.Rs*

MVI R,8-bit

- ‘.'? AN AR R

OuT 8-bit port address
IN. - 8-bit port address
HLT

NOP

#The symbols Rd and Rs are geperic terms;

Description

Move

O This is a 1-byte instruction

O Copies data from source register Rs to destina-
tion register Rd

Move Immediate;

O This is a 2-byte instruc(ion

[0 Loads the 8 bits of the second byte into the
register specified)

Output to Port

O This is a 2-byte instruction

O Sends (copies) the contents of the accumulator
(A) to the output port specified in the second
byte ' '

Input from Port

O This is a 2-byte instruction

O Accepts (reads) data from the input port speci-
fied in the second byte, and loads into the ac-
cumulator

Halt

O This is a 1-byte instruction

O The processor stops executing and enters wait
state

O The address bus and data bus are placed in
high impedance state. No register contents are
affected

No Operation

[This is a 1-byte instruction
O No operation is performed

O ‘Generally used to increase processing time or
substitute in place of an instruction. When an
error occurs in a program and an instruction
needs to be eliminated, it is more convenient
to substitute NOP than to reassemble the
whole program |

méy~répreseﬁn§; a‘ﬂy of the 8085 registers: A, B, C, D, E, H, and L.

Scanned with CamScanner

L decimal num,.

indicates hexa m
Load the accumulator A with the data byte 82H (the lettet H
ber), and save the data in register B.

Instructions MVI A, 82H,
MOV B,A
ads the accumulator with the data byt

The first i ion i _byte instruction that lo -
Ist instruction is a 2-by the contents of the accumulator in reg-

82H, and the second instruction MOV B,A copies
ister B without changing the contents of the accumulator.

Scanned with CamScanner

output ports with addresses from UUH to FFH can be connected to the system
The ?nswer to Fhe Sf?cond question depends on the logic circuit (called interfacing)
used to corinect and identify a port by the system designer (see Chapter 4).
' b
\op Ly

6.11 ' Addressing Modes (\:t 1
\.The above instructions are commands to the microprocessor to copy 8-bit data from a
//-,/«Sf)urce into a destination. In these instructions, the source can be a register, an input port,
“" or an 8-bit number (O0H to FFH). Similarly, a destination can be a register or an output
port. The sources and destination are, in fact, operands. The various formats of specify-

e operands are called the addressing modes. The 8085 instruction set has the fol-

ing th
y the correspond-

lowing addressing modes. (Each mode is followed by an example and b
ing piece of restaurant conversation from the analogy discussed in Chapter 5.)

1. Immediate Addressing—MVI R,Data (Pass the butter)

/2. Register Addressing—MOV Rd,Rs (Pass the bowl)
3. Direct Addressing—IN/OUT Port# (Combination number 17 on the menu)
4. Indirect Addressing—Illustrated in the next chapter (I will have what Susie has) N

(O0Y RN 1 L ORL B | T M jioed | AOD N sz@;w
\WO-J er‘ S'TP«')‘ O CoNP m/\ﬂ,’\, GO s L Ou\g\

Scanned with CamScanner

6.12 Illustrative Program: Data Transfer—From Register
to Output Port

PROBLEM STATEMENT
/’Load the hexadecimal number 37H in register B, and display the number at the output

/¢ port labeled PORT]1.

PROBLEM ANALYSIS
This problem is similar to the illustrative program discussed in Section 5.41. Even though

this is a very simple problem it is necessary to break the problem into small steps and to
outline the thinking process in terms of the tasks described in Section 6.1.

STEPS
Step 1: Load register B with a number.
Step 2: Send the number to the output port.

QUESTIONS TO BE ASKED
O Is there an instruction to load the register B? YES—MVI B.
O Is there an instruction to send the data from register B to the output port? NO. Review

the instruction OUT. This instruction sends data from the accumulator to an output port.
O The solution appears to be as follows: Copy the number from register B into accumu-

lator A.
O Is there an instruction to copy data from one register to another register? YES—MOV

Rd,Rs.

Scanned with CamScanner

program in the next section. .

ASSEMBLY LANGUAGE PROGRAM
8085 Mnemonics

Tasks *
1. Load register B with 37H. ng IZ3}’37H
2. Copy the number from B to A. M éRT]
3. Send the number to the output—port O1H. ?{E;f P

4. End of the program.

TRANSLATION FROM ASSEMBLY LANGUAGE TO MACHINE

LANGUAGCE
Now, to translate the assembly language program into machine language, look- up the
hexadecimal machine codes for each instruction in the 8085 instruction set and write each

machine code in the sequence, as follows:

8085 Mnemonics Hex Machine Code

1. MVI B,37H 06
37
2. MOV A,B 78
3. OUT PORT1 D3
01
4, HLT 76

This program has six machine codes and will require six bytes of memory to enter
the program into your system. If your single-board microcomputer has R/Wi memory
starting at the address 2000H, this program can be entered in the memory locations
2000H to 2005H. The format generally used to write an assembly language program is

shown below.
PROGRAM FORMAT
/_premory * Machine
¢ Address Code Instruction
© . (Hex) (Hex) Opcode Operand C
4 A : omments
- XX00" 06 MVI B,37H :Load register B with data 37H

SXX01 | Haggiia

*A number followed by the letter H represents a hexadecimal number.
- tTEnter hlghjordcr address (page number) of your R/W memory in place of XX

Scanned with CamScanner

e
s

v
V4 . - Copy (B) mto (A
o XXD’Z i : 78 ‘\OQLOT_; &?RT‘ ,l)\‘p‘:‘B a\‘\«‘ln‘“‘-‘“\\\’ c\\l\k’(\\.\‘
Xx04 gém"x‘ : (3TH) at Portl
XX05 76 HLT

‘End of the program

This program has five columns: Memory Address, Machine Code. Opeode,

Operand, and Comments. Each s described in the context of a single-board microcom
puter,

Scanned with CamScanner

1€

IN'I'RODUCTION TO 8085 INSTRUCTIONS

- ARETHMATIC INGT VAN
ADD: Add Add the contents of a register.”
ADI : Add Immediate Add 8-bit data. '
SUB : Subtract Subtract the contents of a register.
‘SUI : Subtract Immediate Subtract 8-bit data.
INR : Increment ‘Increase the contents of a register by 1.
DCR : Decrement Decrease the contents of a register by 1.

- The arithmetic operations Add and Subtract are performed in relation to the contents of
the accumulator. However, the Increment or the Decrement operations can be performed

in any register. The instructions for these operations are explained below.

INSTRUCTIONS
These arithmetic instructions (except INR and DCR)

1. assume implicitly that the accumulator is one of the operands.

2. modify all the flags according to the data conditions of the result.
3. place the result in the accumulator.

4. do not affect the contents of the operand register.

The instructions INR and DCR

1. affect the contents of the specified register.

2. affect all flags except the CY flag. ¢

The descriptions of the instructions (including INR and DCR) are as follows:
. X 1)

Opcode Operand ' Description

ADD R' Add
i O This is a 1-byte instruction
O Adds the contents of register R to the contents of the ac-
: . ~ cumulator
ADI 8-bit ~ Add Immediate
O This is a 2-byte instruction
- [0 Adds the second byte to the contents of the accumulator
SUB R * Subtract
- [This is a 1-byte mstructlon
= E] Subtracts the contents of register R from the contents of
the accumulator
SUI 8-bit Subtract Immedlate i
O Thlq is @ 2- byte instruction -

“Memory-related arithmetic operations are excluded here: thcv‘ﬁre discused s ’1"‘ iy
sk - : . PR R A Y P) 5 - AIsCussed in Chakeae oy

Scanned with CamScanner

L

-
-

PROGRAMMING THE 8028

01 Subtracts the second byte from the contents of the accu-

e mulator
S R* Increment

- ——

O This is z 1-byte instruction
O Increzses the contents of register R by 1
Caution: All flags except the CY are affected

DCr B* Decrement
O This is z 1-byte instruction

TJ Decrezses the contents of register R by 1
Caution: All flags except the CY are affected

6.21 Addition

The 8085 performis addition with 8-bit binary numbers and stores the sum in the accu-
mulator. If the sum is larger than eight bits (FFH), it sets the Carry flag. Addition can be
performed either by adding the contents of 2 source register (B. C, D, E.H, L, or mem-
ory) to the contents of the accumalator (ADD) or by adding the second byte directly 10

the contents of the accumulztor (ADI).

Scanned with CamScanner

Add the number 35H directly to the sup in the previous example when the CY flag is set.
[nstruction ADI 35H

CYy

(A) : 4AH=[1 0100 1010
+

(Data) : 35H=. (01
(A) : 7FH=1[0] 01 1

1 0101
1 1111
vFlag Status: S=0,Z=0,CY =0

The addition of 4AH and 35H does not generate a carry and will reset the previous Carry
 flag. Therefore, in adding numbers, it is necessary to count how many times the CY flag
is set by using some other programming techniques (see Section 7.32).

Assume the accumulator holds the data byte FFH. Illustrate the differences in the flags set
by adding 01H and by incrementing the accumulator contents.

Instruction ADI O1H

CcY »

(A) : FFH= 1111 1111
+

‘(Data) : OIH = 0000 0001

1111 1111 Cary

, AR

(A) :[MooH= & 000 0000
CY

Flag Status: S=0,Z=1,CY =1

After addiﬁg OlH.to FFH, the sum in the accumulator is O with a carry. Therefore, the CY
-and Z ﬂags are sé:_t. The Sign flag is reset because D5 is O.

Instructlon INR A
The accumulator contents will be 00H, the same as bcforc However, the instruction INR
W1ll not affect the Carry flag; it will remain in its previous status.

F]dg Status: S=0,Z=1,CY =NA

Exc:

‘,‘HAG CONCEPTS AND CAUTIONS

Eay As descnbed in the previous chapter, the flags are flip-flops that are set or reset after the

»executlon of. arxthmem: and logic operations, with some exceptions. In many ways, the
: v,ﬂags are llke sxgns on an mtersmte hlghway that help drivers find their destinations.

Scanned with CamScanner

6.22 llustrative Program: Arithmetic Operations—Addition
\/,f and Increment
PROBLEM STATEMENT

Write a program to perform the following functions, and verily the output,

1. Load the number 8BH in register D.

2, Load the number 6FH in register €,

3. Increment the contents of register C by one,

4, Add the contents of registers C and D and display the sum at the output PORTT.

PROGRAM
The illustrative program for arithmetic operations using addition and increment is pr
sented as Figure 6.5 to show the register contents during some of the steps.

Scanned with CamScanner

Memory
ddress (H)

HI-LO
XX00

05

07
08
09

IGURE 6.5

Machine
Code

8B
OE
6F

79

D3

PORT #
76

lnsu'\IC“on
me ()ptrln
Myl DSBH
MVI C.6FH
INR C
MOV A.C
ADD D
OUT PORTI
PORT]I
HLT

: B
D

H

£ anwe

Comments and

Register Contents

The first four machine codes

joad the registers #s

lustrative Program for Arithmetic Operations—Using Addition and Incremen:

. Instruction ADD D adds (D) to (A), stores the sum in A,

shown below:

=,

(A)

T0H =

S 7 vy {
P—‘—_’—W—‘_’——-‘ S — M B
6F
r-_____.________,____.._._—--r—v
8B
Add 01 to (C): 6F + 01 = 70%
S 7Z CY
70 00 X
70
8B
- =
FB | O 0
70
88
End of the program
and sets the Sign flag as

O1 11 0000
_ +
(D) 8BH = FOOO 101 1
FBH:: LT L 101 1 (see Figure 6.5)

| B 4
“Fhw Statu% S=1, 12-0 CY=0

3~ -The sum FBH is dmn]aved hu N

Scanned with CamScanner

~~

6.24 lustrative Program: Subtraction of Two Unsigned Numbersg

PROBLEM STATEMENT

Write a program to do the following:

1. Load the number 30H in register B and 39H in register C.
2. Subtract 39H from 30H.

3. Display the answer at PORT].

PROGRAM

The illustrative program for subtraction of two unsigned numbers is presented as Figure
6.6 to show the register contents during some of the steps.

PROGRAM DESCRIPTION

1. Registers B and C are loaded with 30H and 39H, respectively. The instruction MOV
A.B copies 30H into the accumulator (shown as register contents). This is an essential
step because the contents of a register can be subtracted only from the contents of the
accumulator and not from any other register.

2. To execute the instruction SUB C the microprocessor performs the following steps in-
ternally:

Step 1: 3SO9H=0011 1001
I’s complementof 39H =1 100 0110

+
Step 2: Add0Ol =0000 0001
2’s complement of 39H =1 1 00 01 11

‘ +
' S ‘ =) 000

tep 3: Add 30H to 2’s complement of 39H = 0 0 1 1 (

Wep Cy 0] 1111 0111

Scanned with CamScanner

~ INTRODUCTION TO 8085 INSTRUGTIONS U;/

Step 4: Complement carry M 1111 0111=F7H
Flag Status: S = |, 7 = 0, CY =]

3. The numbcr. F7H is a 2’g complement of the magnitude (39H — 30H) = 09H.
4. The instruction OUT displays F7H 4 PORT1

PROGRAM OUTPUT

This program will display F7H as the output. In this program, the unsigned numbers were
used to perform the subtraction. Now, the question is: How do you recognize that the an-
swer F7H is really a 2°s complement of O%H and not a straight binary F7H?

The answer lies with the Carry flag. If the Carry flag (also known as the Borrow
flag in subtraction) is set, the answer is in 2’s complement. The Carry flag raises a second
question: Why isn’t it a positive sum with a carry? The answer is implied by the instruc-
tion SUB (it is a subtraction).

There is no way to differentiate between a straight binary number and 2’s comple-

- ment by examining the answer at the output port. The flags are internal and not easily dis-
played. However, a programmer can test the Carry flag by using the instruction Jump On
Carry (JC) and can find a way to indicate that the answer is in 2’s complement. (This is
discussed in Branch instructions.) :

-
\

Memory Machine Instruction Comments and
~ Address (H) Code Opcode Operand Register Contents
: ~
HI-LO . , :
Load the minuend in register B
XX00 : _06 MVi B:30H Load the subtrahend in register C
01 30 The register contents:
02 OE MVI C.39H
.03 39 | A 30 F
04 78 MOV A:B
: fi : B 30 39 C
05 9 SUB C :> = '
| B e SO B 30 39 C
SR Tk D3 OUuT PORTI
g b PORTHEE
o OB e iy

- Unstrative Program for S_ubtfécﬁon of Two Unsigned Numbers‘7

825 Review of Important Conceps
Scanned with CamScanner

——

LOGIC OPERATIONS

;\/ rgicroprocessor is basically a programmable logic chip. It can perform all the logic

" functions of the hard-wired logic through its instruction set. The 8085 instruction set ip.
cludes such logic functions as AND, OR, Ex OR, and NOT (complement). The opcodes

of these operations are as follows:*

ANA: AND Logically AND the contents of a register,
ANI : AND Immediate Logically AND 8-bit data. |
ORA: OR Logically OR the contents of a register.
ORI : OR Immediate Logically OR 8-bit data.

XRA: X-OR Exclusive-OR the contents of a register.
XRI : - X-OR Immediate Exclusive-OR 8-bit data.

All logic operations are performed in relation to the contents of the accumulator. The in-
structions of these logic operations are described below.

INSTRUCTIONS
The logic instructions

1. implicitly assume that the accumulator is one of the operands.

2. reset (clear) the CY flag. The instruction CMA is an exception; it does not affect ar
flags.

3. modify the Z, P, and S flags according to the data conditions of the result.

4. place the result in the accumulator,

5. do not affect the contents of the operand register.

Scanned with CamScanner

-

INTRODUCTION TO 8085 INSTRUCTIONS

(_)pcode
ANA

ORA

ORL

Operand

. R
w®
\ _,‘

8-bit

Description

Logical AND with Accumulator ~

U ThlS_ is a 1-byte instruction

O L£§1¢?1!Y§‘N_DS the contents of the register R with the
contents of the accumulator

. E}gf}S_T_QXiSTGTééL and A;Qis set

AND Immediate with Accumulator

0" This is a 2-byte instruction

O Logically ANDs the second byte with the contents of the
accumulator - SO - ' B

O 8085: CY is reset and AC is set

Logically OR with Accumulator

O This is a 1-byte’instruction

O Logically ORs the contents of the register R with the
contents of the accumulator

OR Immediate with Accumulator

O This is a 2-byte instruction

O Logically ORs the second byte with the contents of the
accumulator '

Logically Exclusive-OR with Accumulator

[0 This is a 1-byte instruction

[0 Exclusive-ORs the contents of register R with the con-
fents of the accumulator

Exclusive-OR Immediate with Accumulator

O This is a 2-byte instruction

] Exclusive-ORs the second byte with the contents of the
accumulator

~ Complement Accumulator

O] This is a 1-byte instruction that complements the con-
tents of the accumulator
0 No flags are affected

Scanned with CamScanner

